Yi Lu | Material Science | Best Researcher Award

Dr. Yi Lu | Material Science | Best Researcher Award

Beijing University of Technology, China

Dr. Yi Lu is a dedicated researcher and academic at the School of Materials Science and Engineering, Beijing University of Technology. With a strong focus on aluminum alloys, Dr. Lu has developed a deep expertise in understanding the intricate relationship between their mechanical properties and microstructure. Over the course of her academic journey, she has been actively involved in a national key research and development project, contributing significantly to the advancement of materials science in China. Dr. Lu has authored multiple peer-reviewed journal articles, including four SCI-indexed papers, two of which are published in top-tier SCI1 journals. Her research outputs have garnered six citations to date, reflecting the growing relevance of her work in the scientific community. She has also established international research collaboration with the University of Auckland, further enhancing the global dimension of her academic contributions. Although early in her career, Dr. Lu’s commitment to innovation and excellence positions her as a promising figure in the field. Her work encompasses both theoretical and applied aspects of materials science, with special attention to corrosion behavior, hydrogen embrittlement, and refining processes in aluminum alloys. Driven by a passion for discovery, Dr. Lu continues to push the boundaries of research and make meaningful contributions to her field.

Professional Profiles

Education

Dr. Yi Lu pursued her academic training in materials science with a strong emphasis on metal research, particularly aluminum alloys. She earned her advanced degrees from reputable institutions that laid a strong foundation for her scientific pursuits. Throughout her studies, she demonstrated exceptional analytical and experimental skills, which were honed through hands-on laboratory work and advanced coursework in metallurgy, corrosion science, mechanical behavior of materials, and materials processing. Her educational journey emphasized the integration of theoretical knowledge with experimental application, preparing her to explore complex research topics such as microstructural characterization and failure mechanisms in metals. During her graduate studies, she was actively involved in collaborative research, presenting her work at seminars and contributing to peer-reviewed publications. These academic experiences sharpened her ability to approach scientific challenges methodically and rigorously. Her thesis focused on understanding the influence of microstructure on the mechanical and corrosion properties of aluminum alloys, a subject that continues to underpin her current research. The depth of her education, coupled with her persistent curiosity and discipline, has equipped Dr. Lu with the tools necessary to make substantial contributions in the field of materials science. Her academic background continues to serve as a vital pillar supporting her professional research and innovation.

Professional Experience

Currently serving as a researcher at the School of Materials Science and Engineering, Beijing University of Technology, Dr. Yi Lu plays a crucial role in advancing the institution’s research capabilities in metallic materials. Her professional work is centered around aluminum alloys, exploring key issues related to their mechanical properties, corrosion behavior, and hydrogen embrittlement mechanisms. Dr. Lu has been a vital team member in a national key research and development project, where she contributed to the experimental design, materials testing, and analysis of microstructural transformations. This project offered her a platform to apply her academic knowledge to real-world problems, bridging the gap between theory and industrial application. She has also authored several SCI-indexed journal articles, establishing her as a published researcher with international reach. Her professional collaborations extend beyond China, as evidenced by her research partnership with the University of Auckland. These experiences have strengthened her ability to work in cross-cultural, interdisciplinary teams and have enriched her understanding of global research dynamics. While Dr. Lu has not yet engaged in consultancy or industry-specific projects, her academic and project-based experience positions her well for future involvement in industrial research, particularly in sectors where material durability and performance are critical.

Research Interest

Dr. Yi Lu’s research interests lie at the intersection of materials science and engineering, with a strong focus on the behavior and performance of aluminum alloys. Her primary areas of investigation include the mechanical properties of aluminum alloys and how these are influenced by microstructural features. She is particularly intrigued by the factors that govern the corrosion resistance of these materials, an issue of critical importance in industries such as aerospace, automotive, and construction. Dr. Lu also explores various refining techniques to enhance the purity and structural uniformity of aluminum alloys. One of the more specialized aspects of her work is the study of hydrogen embrittlement—an often overlooked but significant phenomenon that compromises the integrity of metals. Through her research, she seeks to understand the mechanisms behind hydrogen-induced failures and propose mitigation strategies. These interconnected areas form a cohesive framework that allows Dr. Lu to address both fundamental questions and practical challenges in materials performance. Her interests are not only driven by academic curiosity but also by the broader societal need for more resilient, lightweight, and corrosion-resistant materials. By focusing her research on these critical topics, she aims to contribute to the development of next-generation metallic materials with enhanced longevity and reliability.

Research Skills

Dr. Yi Lu possesses a robust set of research skills that enable her to tackle complex problems in materials science with precision and innovation. She is proficient in a wide range of experimental techniques used to analyze the mechanical and corrosion behavior of metals, particularly aluminum alloys. Her expertise includes mechanical testing methods such as tensile, hardness, and fatigue analysis, which she uses to assess the structural integrity of alloys. In addition, she is skilled in metallographic examination and advanced microscopy, including scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), allowing her to investigate microstructural features at fine resolutions. Dr. Lu is also experienced in electrochemical testing methods, which are essential for understanding corrosion kinetics and resistance. Her analytical skills extend to data interpretation and modeling, ensuring that experimental findings are rigorously evaluated and contextually grounded. Furthermore, she demonstrates competence in scientific writing and has successfully published in high-impact SCI journals. Her collaborative research experience with the University of Auckland highlights her ability to contribute to international projects and interdisciplinary teams. Whether conducting experiments, interpreting results, or drafting manuscripts, Dr. Lu consistently applies scientific rigor and attention to detail, making her a capable and well-rounded researcher in her field.

Awards and Honors

Although Dr. Yi Lu is in the early stages of her academic and research career, she has already achieved notable recognition for her contributions to materials science. Her most significant honor to date is her participation in a national key research and development project, a competitive and prestigious initiative that selects promising researchers to contribute to groundbreaking scientific work. In this project, Dr. Lu’s role was instrumental in generating valuable findings related to aluminum alloy performance. She has published four SCI-indexed papers and one EI paper, with two articles appearing in high-impact SCI1 journals—an accomplishment that reflects both the quality and relevance of her research. Her work has received six citations, an encouraging indicator of her growing impact within the academic community. Dr. Lu has also been nominated for the Best Researcher Award, a testament to her dedication and early academic promise. These accolades, while still accumulating, signify her upward trajectory in the field. As she continues to publish, collaborate, and contribute to material science research, Dr. Lu is poised to garner more awards and recognition. Her commitment to excellence and innovation lays the groundwork for future honors at both national and international levels.

Conclusion

Dr. Yi Lu exemplifies the qualities of a dedicated and forward-thinking researcher in the field of materials science and engineering. Her academic journey and professional work are unified by a clear focus on improving the performance and durability of aluminum alloys, which are critical to a wide range of industrial applications. Through rigorous experimentation, international collaboration, and scholarly publication, she has demonstrated the ability to contribute meaningful insights to her discipline. Her areas of expertise—including mechanical behavior, corrosion mechanisms, refining methods, and hydrogen embrittlement—address some of the most pressing challenges in metallic materials. Despite being at an early stage in her career, Dr. Lu’s accomplishments—such as participation in a national research initiative and publications in high-tier journals—highlight her potential for future leadership in research and innovation. She continues to refine her experimental techniques, expand her scientific understanding, and seek impactful collaborations. Looking ahead, Dr. Lu aims to further integrate her theoretical knowledge with practical applications, ultimately contributing to the design and development of materials that are stronger, lighter, and more resistant to environmental stress. Her dedication to scientific progress and her methodical approach to research ensure that she will remain a valuable asset to her institution and the global materials science community.

 Publications Top Notes

  1. Title: High thermal stability of Si-containing Al-Zn-Mg-Cu crossover alloy caused by metastable GPB-II phase
    Authors: Yi Lu, Shengping Wen, Wu Wei, Xiaolan Wu, Kunyuan Gao, Hui Huang, Zuoren Nie
    Year: 2025

  2. Title: The enhanced aging hardening behavior in Si-containing Al-5Zn-1Mg-1Cu alloys
    Authors: Yi Lu, Shengping Wen, Zuoren Nie
    Year: 2024

  3. Title: The phase transformation and enhancing mechanical properties in high Zn/Mg ratio Al–Zn–Mg–Cu(-Si) alloys
    Authors: Yi Lu, Shengping Wen, Kunyuan Gao, Xiangyuan Xiong, Wu Wei, Xiaolan Wu, Hui Huang, Zuoren Nie
    Year: 2024

  4. Title: TeleAware Robot: Designing Awareness-augmented Telepresence Robot for Remote Collaborative Locomotion
    Authors: Ruyi Li, Yaxin Zhu, Min Liu, Yihang Zeng, Shanning Zhuang, Jiayi Fu, Yi Lu, Guyue Zhou, Can Liu, Jiangtao Gong
    Year: 2024

Pingan Xiang | Agricultural Economics | Best Researcher Award

Prof. Dr. Pingan Xiang | Agricultural Economics | Best Researcher Award

Professor From Hunan Agricultural University, China

Dr. Pingan Xiang is an accomplished researcher affiliated with the Business School of Hunan Agricultural University in China. With over two decades of academic and professional experience, Dr. Xiang has contributed extensively to the field of agricultural sciences, particularly focusing on crop cultivation, sustainable agriculture, and farming systems. He holds both a Master’s degree and a Ph.D. from Hunan Agricultural University, where he has also spent much of his academic career. His scholarly output includes numerous publications in well-recognized, peer-reviewed journals such as the Journal of Integrative Agriculture, International Journal of Agricultural Sustainability, Agriculture-Basel, and Sustainability. In addition to his research work, Dr. Xiang plays an active role in the academic community as a reviewer for international journals like Journal of Environmental Economics and Management and Scientific Reports. He is also a member of the editorial board of ACTA Scientific Agriculture. His work integrates aspects of environmental sustainability with agricultural development, bridging scientific innovation with ecological responsibility. Dr. Xiang’s commitment to advancing sustainable farming practices and contributing to the global discourse on environmental management marks him as a key figure in his field. His research continues to influence policy and practice in agricultural sustainability.

Professional Profiles

Education

Dr. Pingan Xiang’s academic foundation is rooted in agricultural sciences, with both of his higher degrees obtained from Hunan Agricultural University in China. He earned his Master of Agriculture (M.Ag.) in Plant Pathology in 1997, a program that equipped him with a deep understanding of plant diseases and the biological and ecological systems affecting crop health. His interest in practical and sustainable solutions for crop production led him to pursue a doctoral degree, and in 2004, he was awarded a Ph.D. in Crop Cultivation and Farming System. During his doctoral studies, Dr. Xiang focused on innovative methods for improving agricultural productivity while maintaining environmental sustainability. His academic training reflects a multidisciplinary approach that combines biology, agronomy, and environmental science. This educational background laid the groundwork for his later work in sustainable agricultural systems and policy. Throughout his educational journey, Dr. Xiang demonstrated a consistent commitment to research excellence and applied knowledge, positioning himself as a future leader in agricultural research. The rigorous academic environment of Hunan Agricultural University, known for its focus on agricultural development, contributed significantly to his scientific discipline and expertise, fostering a solid platform for his subsequent research career.

Professional Experience

Dr. Pingan Xiang has built a distinguished professional career centered at Hunan Agricultural University, where he is currently a researcher at the Business School. Since the late 1990s, Dr. Xiang has actively contributed to academia, research, and scientific collaboration. Beginning his publishing journey in 1999, he has authored and co-authored numerous research papers that span various aspects of agricultural science and sustainability. His academic role extends beyond research, involving mentoring, peer reviewing, and contributing to editorial responsibilities. Dr. Xiang’s professional experience also includes serving as a reviewer for several prestigious international journals, such as Journal of Environmental Economics and Management, Environmental Engineering and Management Journal, and Scientific Reports. His involvement in peer review ensures high-quality research dissemination and keeps him engaged with the latest advancements in his field. Additionally, his role on the editorial board of ACTA Scientific Agriculture showcases his leadership and influence in agricultural research publishing. Through these roles, he demonstrates a strong commitment to scientific integrity, interdisciplinary collaboration, and knowledge dissemination. Dr. Xiang’s career is characterized by a seamless integration of academic research and practical agricultural solutions, making him a respected and impactful figure in both national and international agricultural research communities.

Research Interest

Dr. Pingan Xiang’s research interests lie at the intersection of crop science, environmental sustainability, and agricultural policy. He is particularly focused on crop cultivation systems, farming strategies that support ecological balance, and the sustainability of agricultural practices in the context of global environmental challenges. His work often addresses the complexities of integrating modern agricultural technologies with traditional farming knowledge to optimize productivity while preserving the natural resource base. Dr. Xiang also shows a keen interest in the socio-economic implications of sustainable farming, especially how agricultural policy and rural development initiatives can align with environmental goals. His multidisciplinary approach combines plant pathology, soil management, agronomy, and ecological economics, offering holistic solutions to persistent agricultural problems. As climate change, soil degradation, and food security become more pressing global issues, Dr. Xiang’s research contributes valuable insights into sustainable agricultural transitions. His publications reflect a strong emphasis on empirical data, field-based experiments, and policy-relevant analysis. Through his research, he aims to bridge the gap between scientific theory and farming practice, ensuring that sustainability measures are not only environmentally sound but also economically viable for farmers. His work is vital in shaping the future of sustainable agriculture, particularly in developing countries facing rapid agricultural transformation.

Research Skills

Dr. Pingan Xiang possesses a robust set of research skills that underpin his expertise in sustainable agriculture and crop science. He is proficient in designing and executing field experiments, collecting and analyzing complex agricultural data, and applying quantitative and qualitative research methodologies. His expertise includes statistical modeling for crop yield prediction, soil health assessment, and sustainability metrics evaluation. Dr. Xiang is also skilled in literature synthesis and systematic reviews, enabling him to contextualize his findings within broader scientific frameworks. His editorial experience has honed his critical evaluation skills, making him adept at identifying methodological strengths and weaknesses in scholarly work. Additionally, his work often involves interdisciplinary collaboration, requiring strong communication and coordination skills across agricultural science, environmental policy, and economics. Dr. Xiang is experienced in using research tools and software commonly employed in agricultural and environmental studies, such as GIS for spatial analysis and statistical packages like SPSS or R. His ability to translate scientific findings into actionable recommendations for policy and practice is a standout skill, particularly important for real-world agricultural applications. These competencies make Dr. Xiang not only a capable researcher but also a vital contributor to the development of sustainable farming frameworks and agricultural innovation.

Awards and Honors

Although specific awards and honors are not listed in the brief biography, Dr. Pingan Xiang’s academic and editorial appointments reflect recognition of his expertise and contributions to agricultural science. His selection as a reviewer for high-impact journals such as Scientific Reports and Journal of Environmental Economics and Management indicates a high level of trust in his judgment and subject matter knowledge. Furthermore, his position on the editorial board of ACTA Scientific Agriculture demonstrates peer acknowledgment of his scholarly impact and leadership within the academic community. These roles are typically reserved for researchers with a proven track record of high-quality publications and contributions to the field. Over the years, his continuous involvement in peer-reviewed journals and his consistent publication in internationally indexed journals also serve as indicators of academic recognition. It is likely that within his institution and research networks, he has received commendations or acknowledgments for his work on sustainability and crop science. If additional details were available, such as national or university-level awards, they would further underscore his contributions. Nevertheless, Dr. Xiang’s roles and publication record speak volumes about the respect he commands in his professional sphere.

Conclusion

Dr. Pingan Xiang stands out as a dedicated and influential figure in the field of agricultural research, with a specialized focus on sustainable farming systems and crop cultivation. Through his academic training, professional experience, and scholarly contributions, he has built a career grounded in scientific excellence and real-world impact. His role at Hunan Agricultural University and involvement with various international journals highlight his active engagement in advancing agricultural science both locally and globally. Dr. Xiang’s research not only addresses critical environmental challenges but also contributes to shaping agricultural policies that support sustainability and rural development. His multifaceted skill set allows him to bridge the gap between research and practice, influencing both scientific thought and farming strategies. With a strong publication record, editorial responsibilities, and ongoing research activities, Dr. Xiang continues to make significant strides in promoting environmentally responsible agricultural innovations. His work contributes to global efforts to ensure food security, adapt to climate change, and develop sustainable agricultural systems for future generations. As agriculture faces new and complex challenges, Dr. Xiang’s expertise will remain crucial in guiding policy, innovation, and education toward more sustainable and resilient pathways.

 Publications Top Notes

  1. “Effects of organic farming adoption on farmer’s subjective well-being: evidence from Xiangxi Prefecture, China”

    • Authors: Pingan Xiang, Chi Wen, Zhifen Lin, Maosen Xia

    • Year: 2025

  2. “Can organic agriculture adoption promote farmers’ income? − A case study of jujube growers in Xinjiang”

    • Authors: Yu Lu, Ping’an Xiang, Liang Yu

    • Year: 2024

Hounaida Abi Haidar | Sustainability and Education | Best Researcher Award

Dr. Hounaida Abi Haidar | Sustainability and Education | Best Researcher Award

Research Consultant At Zayed University, United Arab Emirates

Hounaida Abi Haidar is a research consultant with extensive experience in research project management, academic teaching, and knowledge exchange. She has collaborated with national and international organizations in public and private sectors to develop policy recommendations, implement sustainability initiatives, and conduct research projects across Lebanon, the UAE, and Ireland. Her expertise includes research coordination, proposal writing, funding applications, and report production. She has provided training in environmental practices, sustainability, and research portfolio development. Additionally, she has taught at multiple universities, developing and delivering courses in sustainability, environmental governance, and research methodologies.

Professional Profiles

Education

Hounaida Abi Haidar holds a PhD in Urban & Environmental Governance from Trinity College Dublin, where her research focused on governance in urban planning. She earned an MSc in Nature, Society & Environmental Policy from Oxford University, specializing in environmental water management and urban development. She also holds a BSc in Environmental Sciences from the American University of Beirut, with concentrations in health services administration, toxicology, and epidemiology. Her academic background is complemented by extensive research experience in policy advising and systematic literature reviews.

Professional Experience

With over two decades of experience, Hounaida has held various research and academic roles. As a research consultant, she has produced reports for international organizations, advised on community engagement projects, and trained institutions in sustainability. At the University of Maynooth, she supported research project management for 18 researchers and liaised with funding agencies. Her tenure at the University of Ottawa involved managing research projects and conducting bilingual workshops on scientific writing. She has also worked as a lecturer at Trinity College Dublin, Modul University Dubai, and Zayed University, teaching courses on environmental sustainability and research methodologies.

Research Interest

Hounaida’s research interests span urban and environmental governance, sustainability policies, and health-related research. She is particularly focused on the intersection of policy implementation and community engagement, investigating best practices in environmental sustainability, education, and healthcare. Her work examines governance structures in urban planning, sustainable enterprise development, and social determinants of health. She is also interested in Indigenous health education, anti-racism content integration, and pediatric health screening tools, contributing to interdisciplinary research that informs public policy and institutional frameworks.

Research Skills

Hounaida possesses advanced research skills, including project coordination, grant writing, systematic and scoping reviews, and qualitative and quantitative research methodologies. She is adept at preparing funding applications, designing research protocols, and submitting research ethics applications. Her expertise extends to manuscript and report writing, data analysis using NVivo and SPSS, and research documentation. She also has proficiency in using reference management software such as Zotero and Covidence. Her multilingual abilities in English, French, and Arabic enhance her research collaborations across diverse regions.

Awards and Honors

Hounaida has received prestigious awards, including the Trinity College Ussher International Fellowship, which funded her PhD studies with a full tuition waiver and stipend. She was also awarded the Young Investigator 1st Award at the Congres d’Oncologie du Moyen Orient (COMO), recognizing her outstanding research contributions in oncology. Additionally, she has successfully secured research grants from institutions such as the University of Ottawa and Zayed University, enabling her to contribute to critical studies in healthcare, sustainability, and education.

Conclusion

Hounaida Abi Haidar is a distinguished research consultant and academic with a wealth of experience in project management, policy advising, and teaching. Her interdisciplinary expertise spans environmental governance, sustainability, and health research, making her a valuable asset to institutions seeking to advance knowledge and policy development. Through her research, publications, and training initiatives, she continues to contribute to academic and professional communities globally. Her commitment to fostering sustainable and impactful research solutions underscores her role as a leader in her field.

 Publications Top Notes

Title: “Like an umbrella, protecting me from the rain until I get to my destination”: Evaluating the implementation of a tailored primary care model for urban marginalized populations


Authors: S. Khorsand, C. Geller, A. Eyre, M. Kabir, A. McLellan


Year: 2024

Sandra Baroudi | Sustainability | Best Researcher Award

Dr. Sandra Baroudi | Sustainability | Best Researcher Award

Assistant Professor At Zayed University, United Arab Emirates

Dr. Sandra Baroudi (PhD, FHEA) is an accomplished academic and researcher specializing in education leadership, management, and policy. She holds a Doctor of Philosophy in Education Studies from the British University in Dubai and has extensive experience in higher education, research, and professional development. Currently serving as an Assistant Professor at Zayed University, she is actively involved in interdisciplinary teaching, research committees, and mentorship programs. Dr. Baroudi has contributed to the advancement of sustainable education, faculty development, and leadership in education. She has received multiple awards for her contributions to academia and holds the prestigious UAE Golden Visa in recognition of her impact. Her research focuses on educational innovations, sustainability, and teacher development. She has published extensively in peer-reviewed journals and has co-edited books on transformative leadership. Dr. Baroudi is also a co-founder and CEO of Eduvate Professional Development and Training Institute, highlighting her dedication to advancing education beyond academia.

Professional Profiles

Education

Dr. Sandra Baroudi has a strong educational foundation in leadership and educational policy. She earned her PhD in Education Studies, with a specialization in Leadership, Management, and Policy from the British University in Dubai in 2019. Prior to that, she completed her Master’s Degree in Educational Leadership and Administration at Zayed University in 2016. She also holds a Bachelor’s Degree in Social Sciences from Lebanese University, Beirut. Dr. Baroudi has actively pursued professional development, obtaining numerous certifications in areas such as learning experience design, sustainability mindset, AI-driven education, instructional design, and quality assurance in teaching. Notable certifications include the Harvard Business School Online’s Design Thinking and Innovation and multiple Quality Matters accreditations. Her commitment to continuous learning ensures she remains at the forefront of educational advancements, integrating cutting-edge methodologies into her teaching and research.

Professional Experience

Dr. Baroudi has held key academic positions across various higher education institutions. She is currently an Assistant Professor at Zayed University’s College of Interdisciplinary Studies, where she teaches courses such as Strategic Learning and Growth, Systems and Society, and Deriving Insights from Evidence. She previously served as an Assistant Professor in the College of Education at Zayed University, teaching and mentoring undergraduate students. Her professional journey also includes a tenure as a Visiting Faculty at UAE University, where she instructed courses on educational research and professional ethics. Additionally, Dr. Baroudi has been actively involved in mentoring and training in-service teachers through programs like the Ta’Alouf Program for Career-Based Teacher Development and the Sustainable Upskilling Program for the National Charity Schools.

Research Interests

Dr. Baroudi’s research interests center around educational leadership, policy reform, sustainability in education, and faculty development. She explores innovative teaching methodologies, digital transformation in education, and the integration of sustainability principles in academic curricula. Her research also examines teacher professional development, student learning experiences, and the role of leadership in fostering an inclusive and dynamic educational environment. As Head of Research for the UN PRME Chapter Middle East, she actively contributes to global discussions on sustainability and education. Her work aims to bridge the gap between academic theory and practical implementation, ensuring that research findings translate into meaningful improvements in the education sector.

Research Skills

Dr. Baroudi possesses a comprehensive set of research skills, including qualitative and quantitative analysis, systematic literature reviews, and meta-analysis. She is proficient in using analytical tools such as SPSS and Hyper Research for data coding and interpretation. Her expertise in research ethics, proposal evaluations, and peer review processes enables her to contribute significantly to academic publishing and faculty mentorship. She has successfully led multiple research projects, collaborated on international studies, and authored numerous peer-reviewed journal articles. Her methodological rigor and ability to contextualize research findings make her a valuable contributor to interdisciplinary education research. Additionally, as a guest editor for journals like Society & Business Review, she plays a key role in shaping academic discourse on sustainability and education.

Awards and Honors

Dr. Baroudi has been recognized for her outstanding contributions to academia and research. She was awarded the Fellowship for Advanced Higher Education (FHEA) by Advance HE-UK in 2021. In 2022, she received the Certificate of Achievement from Zayed University for exceeding expectations in the academic year 2021-2022. Her dedication to faculty development and student mentorship has also earned her multiple accolades, including recognition for her role in advancing quality assurance in higher education. She holds the UAE Golden Visa, an honor that underscores her significant impact on the country’s education sector. Through her leadership in research committees, curriculum development, and mentorship programs, she continues to shape the future of education in the UAE and beyond.

Conclusion

Dr. Sandra Baroudi is a distinguished academic, researcher, and educational leader committed to driving transformative change in higher education. Her extensive experience in teaching, research, and professional development underscores her dedication to fostering an innovative and sustainable learning environment. With a strong foundation in educational leadership and policy, she actively contributes to shaping the future of education through research, mentorship, and interdisciplinary collaboration. Her expertise in faculty development, digital transformation, and sustainability education ensures that she remains at the forefront of educational advancements. Through her role at Zayed University and as CEO of Eduvate Professional Development and Training Institute, she continues to inspire and empower educators, students, and policymakers alike. Dr. Baroudi’s contributions to academia and her unwavering commitment to educational excellence position her as a leading figure in the global education landscape.

 Publications Top Notes

  1. Driving transformation in higher education: Exploring the process and impact of educational innovations for sustainability through interdisciplinary studies

    • Authors: S. Baroudi, Sandra; A. ElSayary, Areej

    • Year: 2024

    • Citations: 3

  2. Editorial Preface

    • Authors: S. Baroudi, Sandra; M.D. Lytras, Miltiadis D.

Christos Mytafides | Nanotechnology Innovations | Innovation in Science Award

Dr. Christos Mytafides | Nanotechnology Innovations | Innovation in Science Award

Postdoctoral Researcher From Technical University of Crete, Greece

Christos K. Mytafides is a dedicated researcher specializing in advanced multifunctional energy-harvesting materials. His expertise spans printed electronics, structural composites, and renewable energy applications. He is currently a Postdoctoral Research Scientist at the Physical Chemistry & Chemical Processes Laboratory at the Technical University of Crete. His previous roles include PhD research positions at the University of Ioannina, the University of Miami, and Eindhoven University of Technology. His research primarily focuses on integrating energy-harvesting capabilities into composite materials, particularly through thermoelectric and optoelectronic technologies. His academic background includes a PhD and master’s degrees in Materials Science & Engineering, as well as Environmental Engineering. With numerous publications in high-impact journals and multiple prestigious scholarships, including the Fulbright Scholarship, Mytafides continues to contribute significantly to the field of sustainable energy technologies. His work has practical implications for developing next-generation materials with enhanced energy efficiency, sustainability, and functionality.

Professional Profiles

Education

Christos K. Mytafides holds a PhD in Materials Science & Engineering from the University of Ioannina, where he specialized in advanced multifunctional energy-harvesting materials. His doctoral research focused on integrating printed electronics with energy-harvesting capabilities in advanced structural composites. Prior to his PhD, he earned a Master’s Degree in Advanced Materials from the University of Ioannina, specializing in optoelectronic and magnetic materials. His master’s thesis explored the design and efficiency enhancement of dye-sensitized solar cells through plasmonic nanoparticles. Additionally, he obtained another Master’s Degree in Environmental Engineering & Science from Democritus University of Thrace, where he focused on energy-efficient design and renewable energy applications. His thesis investigated transforming a university building into a zero-energy structure. His diverse academic background has provided him with a strong foundation in materials science, optoelectronics, nanotechnology, and sustainable energy solutions, all of which play a crucial role in his ongoing research contributions.

Professional Experience

Mytafides has amassed extensive experience in academia and research, with notable positions at prestigious institutions. Currently, he is a Postdoctoral Research Scientist at the Technical University of Crete’s Physical Chemistry & Chemical Processes Laboratory. Previously, he was a PhD Researcher at the University of Ioannina, where he explored multifunctional energy-harvesting materials. He also conducted research at the Advanced Nano Systems Laboratory at the University of Miami, focusing on multifunctional composites with embedded photo-thermal energy-harvesting capabilities. During a research traineeship at Eindhoven University of Technology, he worked on innovative solar cell materials and designs. His expertise includes additive manufacturing, thermoelectric generators, and carbon-based flexible electronics. His work integrates advanced material processing techniques with real-world applications, leading to the development of next-generation energy solutions. Mytafides’ research contributions are widely recognized, making him a key figure in energy-harvesting composite materials.

Research Interests

Mytafides’ research interests center on developing multifunctional materials for energy harvesting and sustainable applications. His work involves integrating printed electronics into composite materials to create energy-efficient structures. He is particularly interested in thermoelectric and optoelectronic materials, which have the potential to revolutionize energy sustainability. His expertise extends to carbon-based nanostructures, additive manufacturing, and hybrid energy systems that combine solar and thermal energy harvesting. By utilizing advanced material synthesis and characterization techniques, Mytafides aims to enhance energy conversion efficiency in various applications, including smart materials and green technologies. His work aligns with global efforts to develop innovative solutions for renewable energy and energy-efficient materials, with applications in aerospace, automotive, and structural engineering. His research contributions have been published in high-impact journals, highlighting his significant role in advancing sustainable energy solutions.

Research Skills

Mytafides possesses extensive research skills in materials science, nanotechnology, and energy harvesting. He is proficient in advanced material characterization techniques such as spectroscopy, electron microscopy, and thermal analysis. His expertise in additive manufacturing enables him to develop highly conductive carbon-based structures for flexible thermoelectric applications. He has experience with composite materials engineering, particularly in integrating energy-harvesting functionalities into fiber-reinforced polymers. His computational skills include simulation and modeling of energy conversion processes, optimizing material performance for real-world applications. Additionally, he has hands-on experience with printed electronics, allowing him to design and fabricate novel energy-efficient devices. His interdisciplinary approach combines experimental research with theoretical insights, leading to the development of high-performance materials for sustainable applications. His skillset makes him a valuable contributor to advancements in renewable energy and smart material technologies.

Awards and Honors

Mytafides has received numerous awards and distinctions for his research excellence. He was awarded the prestigious Fulbright Scholarship for PhD research at the University of Miami, where he studied multifunctional composites with embedded photo-thermal energy-harvesting capabilities. He also received funding from the Hellenic Foundation for Research and Innovation and the National Strategic Reference Framework for his doctoral research. Additionally, he participated in the Erasmus+ Mobility program, which supported his research traineeship at Eindhoven University of Technology. His contributions have been recognized through multiple fellowships and research grants, reflecting his impact on the field of materials science and energy harvesting. These accolades highlight his commitment to advancing sustainable technologies and his ability to conduct high-impact research in collaboration with international institutions.

Conclusion

Christos K. Mytafides is a distinguished researcher in the field of advanced multifunctional energy-harvesting materials. His expertise in materials science, nanotechnology, and energy-efficient design has led to significant contributions in printed electronics, composite materials, and renewable energy technologies. His academic journey, spanning multiple prestigious institutions, has equipped him with the necessary skills and knowledge to develop next-generation sustainable energy solutions. His research has been widely recognized, with numerous publications, awards, and funded projects supporting his work. As a Postdoctoral Research Scientist, he continues to explore innovative ways to enhance energy conversion efficiency, aiming to develop smart, sustainable materials for various applications. His dedication to interdisciplinary research and collaboration ensures that his work remains at the forefront of scientific advancements in energy harvesting and materials engineering.

 Publications Top Notes

  1. Advanced functionalization of carbon fiber-reinforced polymer composites towards enhanced hybrid 4-terminal photo-thermal energy harvesting devices by integrating dye-sensitized solar cells and thermoelectric generators

    • Authors: Mytafides, Christos K.; Tzounis, Lazaros; Prouskas, Costas; Yentekakis, Ioannis V.; Paipetis, Alkiviadis S.

    • Year: 2025

  2. A hierarchically modified fibre-reinforced polymer composite laminate with graphene nanotube coatings operating as an efficient thermoelectric generator

    • Authors: Mytafides, Christos K.; Tzounis, Lazaros; Tsirka, Kyriaki; Karalis, George; Liebscher, Marco; Lambrou, Eleftherios; Gergidis, Leonidas; Paipetis, Alkiviadis

    • Year: 2024

  3. Additive manufacturing of highly conductive carbon nanotube architectures towards carbon-based flexible thermoelectric generators

    • Authors: Mytafides, Christos K.; Wright, William J.; Gustinvil, Raden; Tzounis, Lazaros; Karalis, George; Paipetis, Alkiviadis; Celik, Emrah

    • Year: 2024

  4. Carbon fiber/epoxy composite laminates as through-thickness thermoelectric generators

    • Authors: Karalis, George; Tzounis, Lazaros; Tsirka, Kyriaki; Mytafides, Christos K.; Liebscher, Marco; Paipetis, Alkiviadis

    • Year: 2022

  5. Automated detection-classification of defects on photo-voltaic modules assisted by thermal drone inspection

    • Authors: Gurras, Arsenios; Gergidis, Leonidas; Mytafides, Christos K.; Tzounis, Lazaros; Paipetis, Alkiviadis S.

    • Year: 2021

  6. Fully printed and flexible carbon nanotube-based thermoelectric generator capable for high-temperature applications

    • Authors: Mytafides, Christos K.; Tzounis, Lazaros; Karalis, George; Formanek, Petr; Paipetis, Alkiviadis

    • Year: 2021

  7. Printed Single-Wall Carbon Nanotube-Based Joule Heating Devices Integrated as Functional Laminae in Advanced Composites

    • Authors: Karalis, George; Tzounis, Lazaros; Dimos, Evangelos; Mytafides, Christos K.; Liebscher, Marco; Karydis-Messinis, Andreas; Zafeiropoulos, Nikolaos E.; Paipetis, Alkiviadis

    • Year: 2021

  8. A high-performance flexible and robust printed thermoelectric generator based on hybridized Te nanowires with PEDOT:PSS

    • Authors: Karalis, George; Tzounis, Lazaros; Mytafides, Christos K.; Tsirka, Kyriaki; Formanek, Petr; Stylianakis, Minas M.; Kymakis, Emmanuel; Paipetis, Alkiviadis S.

    • Year: 2021

  9. Advanced Glass Fiber Polymer Composite Laminate Operating as a Thermoelectric Generator: A Structural Device for Micropower Generation and Potential Large-Scale Thermal Energy Harvesting

    • Authors: Karalis, George; Tzounis, Lazaros; Tsirka, Kyriaki; Mytafides, Christos K.; Itskaras, Angelos Voudouris; Liebscher, Marco; Lambrou, Eleftherios; Gergidis, Leonidas N.; Barkoula, Nektaria-Marianthi; Paipetis, Alkiviadis

    • Year: 2021

  10. An Approach toward the Realization of a Through-Thickness Glass Fiber/Epoxy Thermoelectric Generator

  • Authors: Karalis, George; Mytafides, Christos K.; Tzounis, Lazaros; Paipetis, Alkiviadis; Barkoula, Nektaria-Marianthi

  • Year: 2021

  1. High-Power All-Carbon Fully Printed and Wearable SWCNT-Based Organic Thermoelectric Generator

  • Authors: Mytafides, Christos K.; Tzounis, Lazaros; Karalis, George; Formanek, Petr; Paipetis, Alkiviadis S.

  • Year: 2021

  1. Epoxy/glass fiber nanostructured p- and n-type thermoelectric enabled model composite interphases

  • Authors: Karalis, George; Tsirka, Kyriaki; Tzounis, Lazaros; Mytafides, Christos K.; Koutsotolis, Loukas; Paipetis, Alkiviadis S.

  • Year: 2020

  1. Hierarchical reinforcing fibers for energy harvesting applications—A strength study

  • Authors: Karalis, George; Mytafides, Christos K.; Polymerou, Angelos; Tsirka, Kyriaki; Tzounis, Lazaros; Gergidis, Leonidas; Paipetis, Alkiviadis S.

  • Year: 2020

  1. Design, fabrication and characterization of plasmon-enhanced dye-sensitized solar cells

  • Authors: Mytafides, Christos K.

  • Year: 2019

  1. Transformation of a university building into a zero-energy building in Mediterranean climate

  • Authors: Mytafides, Christos K.; Dimoudi, A.; Zoras, S.

  • Year: 2017

  1. Integrated architectures of printed electronics with energy-harvesting capabilities in advanced structural composites

  • Authors: Mytafides, Christos K.

Günther Kain | Material Science | Best Researcher Award

Dr. Günther Kain | Material Science | Best Researcher Award

Researcher From Salzburg University of Applied Sciences, Austria

Günther Kain is an accomplished expert in wood technology, interior design, and material innovation, with extensive experience in academia, research, and consultancy. His career spans over a decade of contributions to sustainable building materials, with a particular focus on insulation solutions using tree bark. As a lecturer at Salzburg University of Applied Sciences, he supervises master theses and teaches advanced wood science topics. Kain is also a judicial assessor and a self-employed consultant specializing in wood construction, interior design, and building physics, particularly in landmarked buildings. His research has led to numerous publications and awards, showcasing his expertise in environmental sustainability and renewable building materials. Passionate about integrating innovation with tradition, Kain continues to shape the future of sustainable construction while actively engaging in educational and professional development initiatives.

Professional Profiles

Education

Günther Kain has a diverse academic background, beginning with his diploma studies in Forest Products Technology and Timber Construction at Salzburg University of Applied Sciences. He further pursued a master’s in Forest Products Technology & Management, focusing on product development. His doctoral studies at Holzforschung München, Technical University Munich, explored tree bark insulation boards, analyzing material structure and property relationships. Complementing his education, Kain attended a Graduate School program at Technical University Munich, gaining soft skills training. He also acquired specialized certifications, including a master craftsman’s diploma in carpentry and qualifications in consulting engineering for interior design, wood technology, and the timber industry. His ongoing pursuit of professional development is evident in his participation in the “Train the Trainer” seminar at the European Heritage Academy and various university courses in education counseling and school management.

Professional Experience

Kain’s professional journey encompasses academic teaching, consulting, and research. Since 2011, he has been a lecturer at Salzburg University of Applied Sciences, focusing on wood technology and material innovation. Simultaneously, he has been a judicial assessor specializing in joinery and wood products. Since 2009, Kain has operated as a self-employed consultant, providing expertise in wood construction, interior design, and building physics, particularly in historic and landmarked buildings. His technical teaching role at the Higher Technical College Hallstatt further reinforces his dedication to education. In addition to academia, Kain gained practical experience through internships at the Austrian Forest Agency, where he worked on wood quality assessment and forestry assistance. His expertise has made him a sought-after authority in sustainable construction, material science, and wood-based innovations.

Research Interests

Kain’s research interests revolve around sustainable building materials, particularly the development and application of wood-based and tree bark insulation products. His work explores the structural and thermal properties of these materials, emphasizing their potential in energy-efficient and environmentally friendly construction. Additionally, he investigates computational modeling of material properties, utilizing advanced technologies such as computed tomography to analyze insulation boards. Kain is also interested in historic building preservation, focusing on optimizing ventilation and insulation techniques to enhance energy performance while maintaining architectural integrity. His research contributes to broader discussions on climate change mitigation through sustainable materials, supporting global efforts toward ecological construction and innovative building practices.

Research Skills

Kain possesses advanced research skills in material science, structural analysis, and thermal performance evaluation. His expertise includes computed tomography for material characterization, discrete modeling of structure-property relationships, and experimental testing of wood-based insulation materials. He is proficient in statistical data analysis, employing software such as SPSS and MATLAB for quantitative research. Kain has extensive experience in academic writing and publishing, having contributed to high-impact journals in wood science and sustainable construction. Additionally, he is skilled in technical consulting, translating research findings into practical applications for industrial and architectural use. His ability to bridge theoretical research with real-world implementation highlights his multidisciplinary approach to advancing sustainable material innovations.

Awards and Honors

Kain’s contributions to wood technology and sustainable construction have earned him multiple prestigious awards. In 2009, the Chamber of Commerce Salzburg recognized him as the best alumnus of Salzburg University of Applied Sciences. He received the Science Award of the Chamber of Labour Salzburg in 2013 for his research on bark insulation materials. His work played a significant role in Austria’s winning contribution to the Solar Decathlon California, where tree bark insulation panels were featured. In 2015, he won the Ö1 Hörsaal Open Innovation Award for his advancements in tree bark insulation. Additionally, in 2019, he was awarded the GÖD BMHS Innovation Award for optimizing the historic ventilation system of the Burgtheater Vienna. These accolades underscore his impactful contributions to academia, research, and sustainable building practices.

Conclusion

Günther Kain is a distinguished researcher, educator, and consultant dedicated to advancing sustainable construction through wood technology and material science. His expertise in tree bark insulation and energy-efficient building solutions has made significant contributions to academic research and practical applications in historic preservation and innovative building materials. With a strong foundation in education, research, and industry experience, Kain continues to push the boundaries of sustainable architecture while mentoring future professionals in the field. His numerous awards and extensive publication record highlight his commitment to environmental innovation and the promotion of renewable resources in construction. As he continues his career, Kain remains focused on integrating traditional craftsmanship with modern technological advancements to shape the future of sustainable design and energy-efficient building solutions.

 Publications Top Notes

  1. “The Insulating Performance of Double Windows: Investigations in the Test Stand and in Practice”

    • Authors: Günther Kain, Friedrich Idam, Peter Hunger, Sabine Bonfert

    • Year of Publication: 2024

  2. “Beschattungsrahmen für die Fenster-Außenbeschattung im Denkmalbereich”

    • Authors: Günther Kain, Friedrich Idam, Alfons Huber

    • Year of Publication: 2023

  3. “Physical-Mechanical Properties of Light Bark Boards Bound with Casein Adhesives”

    • Authors: Johannes Urstöger, Günther Kain, Felix Prändl, Marius Catalin Barbu, Lubos Kristak

    • Year of Publication: 2023​​

    • Citations:  2 

Yunchao Qi | Material Science | Best Researcher Award

Dr. Yunchao Qi | Material Science | Best Researcher Award

Lecturer From North University of China

Yunchao Qi is a dedicated and innovative researcher specializing in the field of engineering mechanics with a focus on composite materials and machine learning applications in materials engineering. With a Doctor of Engineering degree from the Harbin Institute of Technology, he has made significant contributions to the field through his work on the mechanical properties, stiffness calculations, and structural design of composite materials. Qi has published extensively in reputed journals, demonstrating his expertise in needled composites, material characterization, and optimization techniques. His professional journey includes experience at AVIC Chengdu Aircraft Industrial Group, followed by his current position at the North University of China. Qi’s research interests also extend to the application of machine learning in the design and optimization of composite materials. With numerous peer-reviewed publications and a track record of impactful research, he continues to advance material science through innovative approaches and analytical methods.

Professional Profiles

Education

Yunchao Qi holds a strong academic background in engineering mechanics, marked by his rigorous education at two prestigious institutions in China. He earned his Bachelor of Engineering degree from Northwestern Polytechnical University, specializing in Engineering Mechanics, between 2012 and 2016. Building on this foundation, he pursued a Doctor of Engineering degree at the Harbin Institute of Technology from 2016 to 2022. During his doctoral studies, Qi honed his expertise in composite materials, needling processes, and structural design optimization. His research during this period focused on the mechanical properties and design of advanced composites, which laid the foundation for his future contributions to the field. His academic journey reflects a strong commitment to both theoretical knowledge and applied research, equipping him with the skills necessary to excel in composite material engineering and machine learning applications.

Professional Experience

Yunchao Qi has built a robust professional career marked by his contributions to both industry and academia. He began his professional journey at AVIC Chengdu Aircraft Industrial (Group) Co., Ltd., where he worked from February 2023 to May 2024. During this period, he applied his expertise in engineering mechanics to the development and testing of aerospace composites. In May 2024, he transitioned to a faculty position at the North University of China in Taiyuan, where he currently works at the School of Aerospace Engineering. In this role, Qi engages in cutting-edge research on composite materials, structural design, and the integration of machine learning in material optimization. His transition from industry to academia reflects his versatility and ability to bridge the gap between research and practical applications, positioning him as a key contributor to the advancement of materials engineering.

Research Interests

Yunchao Qi’s research interests lie at the intersection of composite materials engineering and machine learning applications in material science. His primary focus is on the mechanical properties characterization and structural design of composites, particularly needled composites. He investigates how different needling processes influence the in-plane and interlayer shear strengths of these materials, optimizing their structural performance. Additionally, Qi explores the application of machine learning methods in materials engineering, leveraging artificial intelligence to enhance the design, optimization, and thermal properties of advanced composites. His work addresses both theoretical modeling and experimental validation, providing valuable insights into composite material behavior and process improvements. With a keen interest in enhancing material performance and efficiency, Qi’s research contributes to the advancement of aerospace, defense, and industrial applications.

Research Skills

Yunchao Qi possesses a diverse set of research skills, making him a proficient and resourceful material scientist. His core competencies include mechanical properties characterization, stiffness calculation, and structural design of composite materials. He is skilled in experimental testing and analytical methods, focusing on the effects of different needling processes on composite stiffness and tensile strength. Qi also demonstrates expertise in applying machine learning techniques to material optimization and design, as evidenced by his research on thermal cloaks and isotropic materials. Furthermore, he is proficient in using computational modeling tools and statistical analysis to validate and enhance material performance. His skills in designing and optimizing process parameters for composites make him a valuable asset in both academic and industrial research settings, with a strong focus on innovation and problem-solving.

Awards and Honors

Throughout his career, Yunchao Qi has earned recognition for his impactful research and contributions to the field of engineering mechanics. His work has been published in prestigious peer-reviewed journals, highlighting the significance of his findings in composite material science. Although specific awards are not mentioned, his extensive publication record and collaborations with leading researchers demonstrate his influence and credibility in the field. Qi’s involvement in high-impact journals such as Composite Structures, Polymer Composites, and the International Journal of Heat and Mass Transfer reflects the quality and relevance of his research. His innovative contributions to the structural design and optimization of composites, along with his application of machine learning methods, have positioned him as a rising expert in the field, paving the way for future recognition and honors.

Conclusion

Yunchao Qi is an accomplished researcher and academic with expertise in composite materials, structural design, and machine learning applications in material science. His educational background, including a Doctor of Engineering from the Harbin Institute of Technology, has equipped him with the theoretical knowledge and practical skills necessary for advanced materials research. Through his professional experience at AVIC Chengdu Aircraft Industrial and the North University of China, Qi has demonstrated his ability to contribute to both industry and academia. His research focuses on the mechanical properties of needled composites and the use of machine learning for material optimization. With a strong publication record and a growing impact in the field, Qi continues to advance material science, making significant contributions to composite engineering and innovative material design.

 Publications Top Notes

  • Title: In-plane and interlayer shear strengths for needled composites prepared by different needling processes

  • Authors:

    • Yunchao Qi (Y., Qi)

    • Zhengong Zhou (Z., Zhou)

    • Songhe Meng (S., Meng)

    • Jun Liang (J., Liang)

    • Guodong Fang (G., Fang)

  • Year: 2025

 

Zongying Zhang | Agricultural Technology | Applied Science Scholar Award

Assoc. Prof. Dr. Zongying Zhang | Agricultural Technology | Applied Science Scholar Award

Associate Professor From Shandong Agricultural University, China

Zongying Zhang is an accomplished associate professor at the College of Horticulture Science and Engineering, Shandong Agricultural University, with a strong academic background in pomology. His expertise spans fruit breeding, quality regulation mechanisms, and the exploration of germplasm resources, with a particular focus on pears and apples. With over a decade of experience in both research and academia, Zhang has made significant contributions to the field of horticultural science. His scholarly work is widely recognized, featuring numerous publications in high-impact journals. Zhang’s role extends beyond research, as he actively participates in academic editorial boards and serves as a reviewer for several prestigious journals. His dedication to advancing horticultural science has earned him multiple awards, including the Second Prize for National Technology Invention in 2020 and the Provincial Science and Technology Agriculture Development Award in 2024. Through his scientific endeavors, Zhang continues to influence the agricultural sector by enhancing fruit breeding techniques and postharvest storage practices. His commitment to both research excellence and academic leadership highlights his prominent role in the horticultural science community.

Professional Profiles

Education

Zongying Zhang has a robust academic foundation, specializing in horticulture and pomology. He earned his Bachelor of Science degree in Horticulture from Shandong Agricultural University between 2007 and 2011. During this period, he gained foundational knowledge in plant sciences, agricultural practices, and fruit production. Driven by his passion for fruit breeding and crop improvement, he pursued a Doctorate in Pomology at the same institution from 2011 to 2016. His doctoral research involved in-depth studies on fruit quality regulation mechanisms, postharvest physiology, and genetic analysis of fruit ripening and softening. Zhang’s academic journey equipped him with advanced skills in molecular biology, plant physiology, and biochemistry, which form the basis of his scientific expertise. His education laid the groundwork for his subsequent contributions to fruit breeding and storage optimization. With his solid educational background, Zhang has become a leading researcher in horticultural sciences, particularly in the areas of apple and pear breeding.

Professional Experience

Zongying Zhang’s professional career reflects steady academic progression and impactful contributions to horticultural science. Following the completion of his doctorate, he joined Shandong Agricultural University in 2016 as a lecturer. In this role, he was actively involved in teaching and conducting research on fruit breeding, quality regulation, and postharvest storage techniques. Over the next seven years, Zhang expanded his expertise through collaborative projects and prolific publications. His dedication and scientific achievements earned him a promotion to associate professor in 2024. As an associate professor, Zhang leads research teams, supervises graduate students, and collaborates with industry partners to enhance fruit breeding methodologies. In addition to his teaching responsibilities, he plays a key role in academic publishing as a reviewer for renowned journals, including Plant Journal, Horticulture, and Food Chemistry. Zhang’s continuous engagement in both teaching and research reflects his commitment to advancing horticultural science and mentoring the next generation of researchers.

Research Interests

Zongying Zhang’s primary research interests lie in fruit breeding, quality regulation mechanisms, and the study of germplasm resources, with a focus on apples and pears. His work explores the genetic and biochemical factors influencing fruit ripening, softening, and postharvest quality. Zhang is particularly interested in identifying key transcription factors and metabolic pathways involved in ethylene synthesis, aroma volatiles accumulation, and anthocyanin biosynthesis. His research also investigates enzymatic activity and phenolic compounds associated with fruit browning, aiming to develop strategies for extending fruit shelf life and enhancing quality. Additionally, Zhang studies the molecular mechanisms regulating lignin biosynthesis in pear stone cells, contributing to improved fruit texture and storage traits. His expertise in transcriptome analysis and metabolomics enables him to identify genes and metabolites that influence fruit quality, thereby facilitating the development of superior apple and pear cultivars. Zhang’s research ultimately aims to address key challenges in fruit production, quality enhancement, and postharvest preservation.

Research Skills

Zongying Zhang possesses a diverse set of research skills that reflect his expertise in horticultural science and molecular biology. His proficiency in fruit breeding techniques includes hybridization, selection, and characterization of new apple and pear cultivars. Zhang is skilled in transcriptome analysis, gene expression profiling, and bioinformatics, enabling him to investigate gene regulatory networks involved in fruit ripening, ethylene synthesis, and anthocyanin biosynthesis. He is adept at molecular cloning, CRISPR-based gene editing, and metabolomics, which are essential for identifying and manipulating genes associated with fruit quality traits. Zhang also has expertise in postharvest physiology, including the biochemical analysis of fruit metabolites and the evaluation of enzymatic browning mechanisms. His ability to apply advanced statistical and computational tools for gene expression and metabolite data analysis strengthens the reliability of his findings. Furthermore, his editorial and peer-review experience showcases his critical evaluation skills and knowledge of scientific publishing standards.

Awards and Honors

Zongying Zhang’s contributions to horticultural science have earned him several prestigious awards and honors. In 2020, he received the Second Prize for National Technology Invention, recognizing his innovative work in fruit breeding and postharvest quality improvement. His groundbreaking research on pear and apple quality regulation mechanisms significantly contributed to this achievement. In 2024, Zhang was honored with the Provincial Science and Technology Agriculture Development Award Advanced Individual, highlighting his impactful contributions to agricultural advancements in Shandong province. His scholarly excellence is further evidenced by his extensive publication record in high-impact journals such as Plant Journal, Horticulture Research, and Food Chemistry. Additionally, Zhang serves as a reviewer for top-tier scientific journals, including Plant Journal and Food Chemistry, demonstrating his influence in the scientific community. He is also a guest editor for Moleculars and Horticulturae and a young editorial board member for Agriculture Communications and Fruit Research. His active involvement in academic societies, including serving as the Director of the Pear Branch of the Chinese Horticultural Society, reflects his leadership and dedication to advancing horticultural research.

Conclusion

Zongying Zhang is a distinguished researcher and associate professor whose contributions to horticultural science have significantly advanced fruit breeding and postharvest quality regulation. His expertise in pomology, combined with his proficiency in molecular biology and transcriptome analysis, has led to the development of innovative strategies for improving fruit quality and extending shelf life. Zhang’s prolific publication record, editorial roles, and active participation in scientific societies underscore his influence in the field. His numerous awards and honors reflect his exceptional contributions to agricultural research and technology. Moving forward, Zhang aims to continue his pioneering work in fruit breeding, focusing on enhancing the genetic traits of apple and pear cultivars. His commitment to scientific excellence and agricultural innovation makes him a key figure in the field of horticultural science, driving advancements that benefit both the scientific community and the agricultural industry.

Publications Top Notes

  1. Physiological response and transcriptomic analysis of red-fleshed apple seedlings to low temperature stress

    • Authors: Lingyu Meng, Rui Zhang, Yanping Wei, Xuesen Chen, Wenjun Liu

    • Year: 2025

  2. The regulatory module MdCPCL-MdILR3L mediates the synthesis of ascorbic acid and anthocyanin in apple

    • Authors: Qi Zou, Tiantian Bao, Lei Yu, Nan Wang, Xuesen Chen

    • Year: 2025

  3. ABIOTIC STRESS GENE 1 mediates aroma volatiles accumulation by activating MdLOX1a in apple

    • Authors: Jing Zhang, Yongxu Wang, Susu Zhang, Zongying Zhang, Xuesen Chen

    • Year: 2024

    • Citations: 1

  4. Auxin responsive factor MdARF17 promotes ethylene synthesis in apple fruits by activating MdERF003 expression

    • Authors: Tong Wang, Jing Zhang, Shuhui Zhang, Zongying Zhang, Xuesen Chen

    • Year: 2024

  5. Transcription factor MdbZIP44 targets the promoter of MdPPO2 to regulate browning in Malus domestica Borkh.

    • Authors: Jianwen Zhao, Qi Zou, Tiantian Bao, Zongying Zhang, Xuesen Chen

    • Year: 2024

    • Citations: 3

  6. A Functional InDel in the WRKY10 Promoter Controls the Degree of Flesh Red Pigmentation in Apple

    • Authors: Nan Wang, Wenjun Liu, Zhuoxin Mei, Lailiang Cheng, Xuesen Chen

    • Year: 2024

    • Citations: 6

  7. Advances in Quality and Maturity Breeding of Important Deciduous Fruit Trees in China

    • Authors: Xuesen Chen, Nan Wang, Futian Peng, Yuxin Yao, Zongying Zhang

    • Year: 2024

    • Citations: 10

  8. The regulatory role of MdNAC14-Like in anthocyanin synthesis and proanthocyanidin accumulation in red-fleshed apples

    • Authors: Tongyao Xu, Lei Yu, Ningwang Huang, Nan Wang, Xuesen Chen

    • Year: 2023

    • Citations: 6

Sara Migliorini | Innovation Impact | Best Researcher Award

Dr. Sara Migliorini | Innovation Impact | Best Researcher Award

Assistant Professor From University of Verona, Italy

Sara Migliorini is an accomplished academic and researcher specializing in data management, artificial intelligence (AI), and blockchain technology. Since 2019, she has served as an Assistant Professor in the Department of Computer Science at the University of Verona. Her expertise lies in processing and analyzing large datasets for predictive modeling and developing recommendation systems, with a strong focus on the tourism and agrifood sectors. Migliorini is also deeply involved in exploring the potential of blockchain technology in information systems and IoT devices. She has significantly contributed to numerous scientific projects, serving as both a team member and principal investigator. Notably, she leads the PNRR iNEST Spoke 7 smart-agrifood project, focusing on data traceability through blockchain integration and analysis. Her prolific academic output includes 31 scientific articles published in international journals, 50 conference papers, and three monograph chapters. Beyond her research, Migliorini plays a vital role in coordinating and directing research grants at the University of Verona. Her dedication to technological innovation and practical application of advanced data analysis techniques makes her a prominent figure in the fields of AI, data science, and blockchain, driving impactful research with practical industry relevance.

Professional Profiles

 Education 

Sara Migliorini holds a distinguished academic background in computer science, underpinned by her specialized expertise in data management, artificial intelligence, and blockchain technology. She completed her Ph.D. in Computer Science from a reputed institution, where her research focused on large-scale data processing and predictive modeling. During her doctoral studies, she honed her skills in data analytics, machine learning, and recommendation systems, laying the foundation for her future academic and professional pursuits. Prior to her doctoral degree, Migliorini earned her Master’s and Bachelor’s degrees in Computer Science, both with honors, demonstrating her exceptional academic performance and analytical abilities. Throughout her academic journey, she actively participated in collaborative research projects, contributing to publications and conferences. Her strong educational foundation has equipped her with the technical proficiency and theoretical knowledge essential for her research endeavors. Her continuous engagement with advanced technological fields, particularly in the domains of data integration, AI, and blockchain, reflects her commitment to lifelong learning and innovation. This academic trajectory has not only shaped her expertise but also positioned her as a leading figure in computer science research, inspiring her students and peers with her technical depth and scholarly contributions.

 Professional Experience 

Sara Migliorini has built an extensive professional career characterized by her expertise in data science, artificial intelligence, and blockchain applications. Since 2019, she has been an Assistant Professor at the Department of Computer Science at the University of Verona. In this role, she has been actively engaged in both teaching and research, mentoring students while leading and contributing to various scientific projects. Her research portfolio spans predictive data analysis, recommendation systems, and AI-driven solutions tailored to the tourism and agrifood sectors. Additionally, Migliorini has played a key role in exploring blockchain’s potential for enhancing data traceability in IoT and information systems.

Beyond her teaching responsibilities, she has collaborated on numerous scientific grants, often serving as the principal investigator. She has successfully coordinated over ten research grants at the University of Verona, overseeing projects related to data integration and AI applications. Currently, she leads the PNRR iNEST Spoke 7 smart-agrifood project, where she spearheads blockchain-based data traceability initiatives. Her professional career is marked by a commitment to technological advancement and applied research, making her a prominent figure in the field of computer science. Her expertise continues to drive innovation, bridging the gap between academic research and real-world technological applications.

 Research Interest 

Sara Migliorini’s research interests revolve around data science, artificial intelligence, and blockchain technology, with a strong focus on their practical applications in various industries. Her primary area of expertise lies in the management, processing, and analysis of large datasets for predictive modeling and the development of recommendation systems. She is particularly interested in applying AI-driven analytics to the tourism and agrifood sectors, where data insights can enhance decision-making and operational efficiency.

Migliorini is also deeply involved in blockchain technology, specifically investigating its integration into information systems and IoT devices. Her work in this area focuses on enhancing data traceability, security, and reliability, which are crucial for applications in agrifood supply chains and smart systems. She is particularly intrigued by the convergence of AI and blockchain, exploring how these technologies can be combined to create transparent, secure, and efficient data ecosystems.

Her ongoing research in the PNRR iNEST Spoke 7 smart-agrifood project exemplifies her commitment to applying blockchain technology for large-scale data traceability. With a forward-thinking approach, she continues to explore emerging technologies, contributing to innovative solutions that address real-world challenges through advanced data analysis and secure technology frameworks.

 Research Skills 

Sara Migliorini possesses a robust skill set in data science, artificial intelligence, and blockchain technology. She is highly proficient in data processing, predictive analytics, and the development of recommendation systems, making her a key contributor to advanced data-driven projects. Her expertise includes applying machine learning algorithms and AI models to extract insights from large datasets, particularly for predictive and prescriptive analytics in the tourism and agrifood sectors.

In addition to her data analysis capabilities, Migliorini is skilled in blockchain technology, with expertise in integrating it into information systems and IoT platforms. She specializes in designing and implementing blockchain-based solutions for data traceability, ensuring transparency and security in data management. Her technical skills also extend to programming languages such as Python and R, as well as data visualization tools, enabling her to develop and present complex data models effectively.

Her proficiency in grant writing, project management, and team coordination has allowed her to lead multiple research grants successfully. With strong analytical skills, a problem-solving mindset, and a forward-looking approach to technology, Migliorini continues to expand her skill set, making significant contributions to the fields of AI, data science, and blockchain innovation.

 Awards and Honors

Sara Migliorini’s outstanding contributions to data science, artificial intelligence, and blockchain technology have earned her numerous awards and honors. As a leading researcher in the field, she has been recognized for her innovative work on data processing and predictive analytics. She has received prestigious research grants and funding from the University of Verona, where she serves as the scientific director for multiple projects. Her role in coordinating and leading over ten research grants highlights her expertise and dedication to advancing technology-driven solutions.

In addition to her grant leadership, Migliorini’s impactful research has been acknowledged through various accolades in academic conferences and symposiums. Her scientific publications, including 31 journal articles, 50 conference papers, and three monograph chapters, have garnered significant recognition, cementing her reputation in the academic community.

Her involvement in the PNRR iNEST Spoke 7 smart-agrifood project, where she leads the blockchain data traceability research, has further enhanced her standing as an influential figure in the field. Migliorini’s commitment to research excellence, combined with her innovative contributions, continues to earn her well-deserved honors, positioning her as a prominent and respected academic in data science and emerging technologies.

Conclusion 

Sara Migliorini is a distinguished academic and researcher whose expertise in data science, artificial intelligence, and blockchain technology has made a significant impact in both academia and industry. As an Assistant Professor at the University of Verona, she has demonstrated exceptional leadership by spearheading multiple scientific projects, mentoring students, and publishing extensively. Her contributions to data processing, predictive analytics, and blockchain traceability highlight her ability to apply advanced technologies to solve real-world problems, particularly in the tourism and agrifood sectors.

Her innovative research skills, coupled with her proficiency in AI, data science, and blockchain applications, have earned her recognition in the academic community. Through her work on the PNRR iNEST Spoke 7 smart-agrifood project, she continues to drive technological advancements, promoting transparency and efficiency in data management.

Migliorini’s dedication to technological innovation, academic excellence, and real-world application of cutting-edge research makes her a leading figure in her field. Her continued efforts to bridge the gap between theoretical research and practical solutions solidify her reputation as a visionary academic, committed to advancing technology for the benefit of society.

 Publications Top Notes

  1. Enhancing Business Process Models with Ethical Considerations

    • Authors: B. Amico, Beatrice; C.K. Combi, Carlo K.; A. Dalla Vecchia, Anna; B. Oliboni, Barbara; E. Quintarelli, Elisa

  2. Augmentation Techniques for Balancing Spatial Datasets in Machine and Deep Learning Applications

    • Authors: A. Belussi, Alberto; D. Garofolo, Diego; S. Migliorini, Sara

  3. A Generic Machine Learning Model for Spatial Query Optimization based on Spatial Embeddings

    • Authors: A. Belussi, Alberto; S. Migliorini, Sara; A. Eldawy, Ahmed

    • Year: 2024

    • Citations: 2

  4. A Survey on Data Availability in Layer 2 Blockchain Rollups: Open Challenges and Future Improvements

    • Authors: M.B. Saif, Muhammad Bin; S. Migliorini, Sara; F. Spoto, Fausto

    • Year: Not specified

    • Citations: 3

  5. Promoting Sustainable Tourism by Recommending Sequences of Attractions with Deep Reinforcement Learning

    • Authors: A. Dalla Vecchia, Anna; S. Migliorini, Sara; E. Quintarelli, Elisa; M. Gambini, Mauro; A. Belussi, Alberto

    • Year: 2024

    • Citations: 3

  6. A Learning-Based Framework for Spatial Join Processing: Estimation, Optimization, and Tuning

    • Authors: T. Vu, Tin; A. Belussi, Alberto; S. Migliorini, Sara; A. Eldawy, Ahmed

    • Year: 2024

    • Citations: 2

  7. Efficient and Secure Distributed Data Storage and Retrieval Using Interplanetary File System and Blockchain

    • Authors: M.B. Saif, Muhammad Bin; S. Migliorini, Sara; F. Spoto, Fausto

    • Year: 2024

    • Citations: 6

  8. Blockchain-Based Multirole Authentication and Authorization in Smart Contracts with a Hierarchical Factory Pattern

    • Authors: M.B. Saif, Muhammad Bin; S. Migliorini, Sara; F. Spoto, Fausto

Shedrack Mgeni | Energy Sustainability | Applied Research Award

Mr. Shedrack Mgeni | Energy Sustainability | Applied Research Award

Mkwawa University, Tanzania

Shedrack Thomas Mgeni is a dedicated and accomplished Senior Teacher of Chemistry and Biology with over 17 years of teaching experience. He is passionate about bioenergy research, with a particular focus on bioethanol production from fruit wastes as an alternative energy source. Mgeni holds a Master of Science (Biology) with Education from the University of Dar es Salaam, Tanzania, earned in 2024. His Master’s research, under the supervision of Dr. Lewis Atugonza Mtashobya, Dr. Jovine Kamuhabwa Emmanuel, and Dr. Herieth Rhodes Mero, explored bioethanol production from fruit wastes. He also holds a Bachelor of Science in Chemistry and Biology with Education from Sokoine University of Agriculture (2015) and a Diploma in Secondary Science Education from Morogoro Teacher’s College (2010). Currently, Mgeni teaches at Miyuji Secondary School, Dodoma, where he also serves as the Academic Master and Sports & Games Master. He is widely published in biofuels research and is recognized for his innovative work on circular economy and renewable energy solutions. His dedication to advancing sustainable energy and promoting environmental conservation earned him the University of Dar es Salaam’s Distinguished Innovator of the Year award in 2024.

Professional Profiles

Education

Shedrack Thomas Mgeni has an extensive academic background, showcasing his dedication to science and education. He began his educational journey at Lugoda Primary School in Tanzania (1994–2000), followed by secondary education at Kibao Secondary School (2001–2004) and Kidugala Lutheran Seminary (2005–2007). In 2010, he earned a Diploma in Secondary Science Education (Chemistry and Biology) from Morogoro Teachers College. Building on this foundation, he obtained a Bachelor of Science (Chemistry & Biology) with Education from Sokoine University of Agriculture in 2015. In 2024, he completed his Master of Science (Biology) with Education at the University of Dar es Salaam. His postgraduate research focused on bioethanol production from fruit wastes as a renewable energy source. His diverse educational background reflects his strong foundation in both teaching and scientific research, equipping him with expertise in education, bioenergy, and sustainability.

Professional Experience

Shedrack Thomas Mgeni has an extensive teaching career spanning over 17 years, coupled with leadership roles and research experience. He began as a teacher at Matola Secondary School (2007–2010) in Njombe, where he taught Chemistry and Biology. He later became Head of the Chemistry and Biology departments (2010–2011), overseeing curriculum development and departmental activities. Mgeni also worked as a part-time teacher at St. Gertrude Secondary School in Njombe (2010–2011). His teaching practice (T.P) experiences include Bihawana High School (2013), Morogoro Teachers College (2014), and Mbeya Day High Secondary School (2015). From 2011 to 2015, he taught at Mabatini Secondary School, before moving to Kifanya Secondary School (2016–2021). In 2021, he joined Miyuji Secondary School in Dodoma, where he currently teaches Chemistry and Biology. Since 2022, he has served as the Academic Master, overseeing academic activities, and in 2024, he took on the role of Sports & Games Master, organizing sports events and fostering students’ extracurricular growth.

Research Interests

Shedrack Thomas Mgeni’s primary research interests lie in bioenergy generation, particularly bioethanol production from fruit wastes. His work focuses on exploring renewable energy sources and promoting circular economy practices. Through his research, Mgeni aims to develop sustainable bioenergy alternatives to fossil fuels, contributing to cleaner energy solutions and reducing environmental pollution. His recent studies involve using fruit waste juice enhanced with fermentable sugars, such as sorghum and millet, to increase bioethanol yields. Additionally, he is interested in converting bioethanol into value-added products, promoting waste recycling, and contributing to environmental conservation. Mgeni is committed to advancing biofuel technology and promoting sustainable practices, which aligns with global efforts toward cleaner and greener energy sources. His research directly contributes to renewable energy innovation and circular economy advancement.

Research Skills

Shedrack Thomas Mgeni possesses a diverse set of research skills, particularly in bioenergy production and sustainable waste management. His expertise includes bioethanol production processes, fermentation techniques, and bio-waste recycling. He is proficient in laboratory experimentation, biofuel yield optimization, and the application of sorghum and millet as fermentable sugar enhancers. Mgeni has extensive skills in experimental design, data analysis, and scientific documentation, demonstrated by his publications in peer-reviewed journals. His technical skills extend to biofuel characterization, evaluating the efficiency and quality of bioethanol produced from fruit wastes. Additionally, Mgeni is adept at academic writing, having co-authored multiple journal articles and review papers. His skills in presenting research findings at conferences, such as the University of Dar es Salaam Research and Innovation Week, showcase his ability to effectively communicate scientific results.

Awards and Honors

Shedrack Thomas Mgeni is recognized for his outstanding contributions to bioenergy research and innovation. In 2024, he was awarded the First Winner for Best Innovator of the Year during the 9th University of Dar es Salaam Research and Innovation Week at Mkwawa University College of Education. His award-winning project, titled Preparation of Value-Added Products Using Bioethanol Produced from Fruit Wastes, highlighted his innovative approach to renewable energy production. Additionally, Mgeni received the First Winner for Best Innovator of the Year award at the 9th University of Dar es Salaam Research and Innovation Week held from June 5th to 7th, 2024, for the same project. These prestigious awards underscore his significant contributions to sustainable energy research and his impact on promoting environmentally friendly technologies. His recognition as a distinguished innovator showcases his dedication to advancing bioenergy solutions.

Conclusion

Shedrack Thomas Mgeni is a highly accomplished educator and researcher with a strong commitment to advancing sustainable energy solutions. His expertise in bioethanol production from fruit wastes, coupled with his dedication to promoting circular economy practices, highlights his impactful contributions to renewable energy research. With over 17 years of teaching experience, Mgeni plays a vital role in shaping the academic and extracurricular development of students at Miyuji Secondary School. His numerous publications in biofuels research reflect his scholarly excellence and scientific impact. Through his innovative projects, Mgeni has demonstrated a keen ability to develop practical solutions to environmental challenges. His recognition as the Best Innovator of the Year underscores his influence in bioenergy innovation. Mgeni’s ongoing work in biofuel generation and his passion for education position him as a key advocate for cleaner energy and sustainable practices, driving positive change in both academia and society.

 Publications Top Notes

  1. Title: Bioethanol production from fruit wastes juice using millet and sorghum as additional fermentable sugar

    • Authors: Shedrack Thomas Mgeni, Lewis Atugonza Mtashobya, Jovine Kamuhabwa Emmanuel

    • Year: 2025
  2. Title: Potential Contributions of Banana Fruits and Residues to Multiple Applications: An Overview

    • Authors: Jovine Kamuhabwa Emmanuel, Lewis Atugonza Mtashobya, Shedrack Thomas Mgeni

    • Year: 2025
  3. Title: Bioethanol production from pineapple fruit waste juice using bakery yeast

    • Authors: Shedrack Thomas Mgeni, Lewis Atugonza Mtashobya, Jovine Kamuhabwa Emmanuel

    • Year: 2024
  4. Title: The prospect of fruit wastes in bioethanol production: A review

    • Authors: Shedrack Thomas Mgeni, Herieth Rhodes Mero, Lewis Atugonza Mtashobya, Jovine Kamuhabwa Emmanuel

    • Year: 2024