Ivica Kopriva | Pattern Recognition | Best Researcher Award

Dr. Ivica Kopriva | Pattern Recognition | Best Researcher Award

Rudjer Boskovich Institute | Croatia

Dr. Ivica Kopriva is a distinguished Senior Scientist at the Ruđer Bošković Institute, Croatia, internationally recognized for his pioneering contributions to signal processing, machine learning, and blind source separation. Dr. Ivica Kopriva’s interdisciplinary research integrates statistical learning, low-rank sparse modeling, and nonlinear decomposition methods to address complex challenges in biomedical imaging, remote sensing, and hyperspectral data analysis. His highly influential publications, including “Multi-view Low-Rank Sparse Subspace Clustering” (Pattern Recognition, 2018) and “l₀-Motivated Low-Rank Sparse Subspace Clustering” (IEEE Transactions on Cybernetics, 2018), have significantly advanced subspace clustering and unsupervised learning, with the former ranked among the top 1% of highly cited papers in Engineering. Dr. Ivica Kopriva’s research further encompasses image co-segmentation, tumor detection, and signal demixing, contributing to innovations in medical imaging and AI-based diagnostics. With over 2,546 citations, an h-index of 21, and an i10-index of 50, Dr. Ivica Kopriva’s scholarly impact extends across multiple disciplines of computational and biomedical sciences. His exceptional achievements have been recognized through numerous awards, including the State Award of the Republic of Croatia for Scientific Achievement (2009), multiple Director’s Awards for Scientific Excellence (2010–2021), and MICCAI Outstanding Reviewer Awards. As a Senior Member of IEEE and OSA and an affiliated faculty member at Virginia Commonwealth University, Dr. Ivica Kopriva continues to contribute extensively to international scientific communities, shaping the global research landscape in computational imaging, data-driven signal analysis, and intelligent biomedical systems.

Profiles: Google Scholar | Scopus | Orcid

Featured Publications

  • Brbić, M., & Kopriva, I. (2018). Multi-view low-rank sparse subspace clustering. Pattern Recognition, 73, 247–258.

  • Huang, T. M., Kecman, V., & Kopriva, I. (2006). Kernel based algorithms for mining huge data sets: Supervised, semi-supervised, and unsupervised learning. Springer Berlin Heidelberg.

  • Ju, W., Xiang, D., Zhang, B., Wang, L., Kopriva, I., & Chen, X. (2015). Random walk and graph cut for co-segmentation of lung tumor on PET-CT images. IEEE Transactions on Image Processing, 24(12), 5854–5867.

  • Brbić, M., & Kopriva, I. (2020). l₀-Motivated low-rank sparse subspace clustering. IEEE Transactions on Cybernetics, 50(4), 1711–1725.

  • Tolić, D., Antulov-Fantulin, N., & Kopriva, I. (2018). A nonlinear orthogonal non-negative matrix factorization approach to subspace clustering. Pattern Recognition, 82, 40–55.